If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=394
We move all terms to the left:
X^2+X^2-(394)=0
We add all the numbers together, and all the variables
2X^2-394=0
a = 2; b = 0; c = -394;
Δ = b2-4ac
Δ = 02-4·2·(-394)
Δ = 3152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3152}=\sqrt{16*197}=\sqrt{16}*\sqrt{197}=4\sqrt{197}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{197}}{2*2}=\frac{0-4\sqrt{197}}{4} =-\frac{4\sqrt{197}}{4} =-\sqrt{197} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{197}}{2*2}=\frac{0+4\sqrt{197}}{4} =\frac{4\sqrt{197}}{4} =\sqrt{197} $
| ((4x-3)/5)-(4x/3)=(2(x-13/15) | | 3(3n+1)=8(7n+6)+5 | | 7/3x+3/8=5/6 | | x=(x^2-9x+20)/4x | | 6(3a+8)=-22+8a | | 3(x-9)^2=81 | | 1/5x+1/6x=11 | | 34-2x=5x+1 | | y1=y2 | | 10+3m=31 | | 2-x=-2x-9 | | (8-8i)^2=-128i | | X-24/8=x/6 | | 4/3+3m/4=37/12 | | 3y–4=y+10 | | 11(4p+4)-4p=4(7p-7 | | 6(x-4)/2=3(x+6)/11 | | 4(w+1)=4 | | 4(w=1)=4 | | 6p+10=3p-2 | | 3y-4=+10 | | 1/2r-3=2-3/4r | | 54+9x=21x+18 | | .9x=11.7 | | 16*x^2-80*x+30=0 | | 32x+51=-15+35x | | 7-6x=-3x-8 | | 9(x-4)/3=3(x+3)/8 | | 5y-10=87 | | 0.5(x)(15-2x)=0 | | 7(3n+5)=6(9n+1)9 | | 20-x/20=2/5 |